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1. INTRODUCTION 5

With each year, more and more information about the world is being generated. In 2021, the

total amount of data created is estimated to have reached 79 zettabyte,1 up from 2 zettabyte in

2010.2 Also in economic research, available data are now often high-dimensional, for example

when using administrative records, scanner data, or text data. For data of that size, the econome-

trician’s usual inference toolkit revolving around least squares regression is often infeasible. 10

It is evident that as the nature of data evolve, the empirical science analyzing these data must

evolve as well. The field of statistics has been embracing this change for some time now, a

process that was famously promoted by Breiman (2001). In this pioneering article, Breiman ad-

vertises what are now commonly known as machine learning methods: flexible statistical tools

that analyze data while imposing little structure on them. The field of economics, however, has 15

been slow to adapt to the new status quo, and despite their tremendous success in many appli-

cations, major advances in machine learning have found their way into standard economics and

econometrics only very recently.

One issue that lies at the heart of econometrics is estimation of causal effects. Formally, given

data on some outcome, treatment, and covariates, {(Yi,Wi, Xi)}i=1,...,N , one is interested in es- 20

timating the average treatment effect τ = E[Yi(1)− Yi(0)], where Yi(w) denotes the potential

outcome that unit i would have if it would be assigned treatment w. In practice, treatment effects

can differ considerably between units, so that the aim is often recovery of heterogeneous treat-

ment effects given covariates, τ(x) = E[Yi(1)− Yi(0)|Xi = x]. For example, one might want

to estimate the individual-specific effect of a costly policy, to apply it only to individuals who 25

derive sufficient benefit from it.

There are two problems that may render estimation via least squares infeasible. First, in high-

dimensional data the number of covariates can easily exceed the number of observations. Second,

the heterogeneous treatment effect τ(x) may exhibit severe non-monotonicity and involve com-

plex interactions between covariates. Then, even if the number of covariates is only moderately 30

high, estimating the shape of τ(x) may require more parameters in the least squares regression

than can be estimated precisely.

Where classic least squares methods capitulate before this new type of data, machine learning

methods are up to the task. One particular method that has proven itself to scale well with large

and complex data is called random forest. In brief, a random forest generates a large number 35

of regression trees, which each approximate a given high-dimensional relationship by a step-

function. By randomly varying input data when constructing these trees, the random forest gen-

erates many different models and finally averages their predictions.

Unfortunately, although random forests are a powerful tool for analyzing high-dimensional

data, they cannot be used out-of-the-box for problems in economic research, for two reasons. 40

1 1 zettabyte = 10
12 gigabyte = 1, 0007 byte

2 https://www.statista.com/statistics/871513/worldwide-data-created, last accessed Dec 18 2021.
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First, the trees that make up the random forest are prediction methods; they approximate a given

function by balancing the fundamental trade-off between bias and variance of the prediction.

Instead, economists require causal methods; unbiased estimates are strictly necessary, at the de-

liberate expense of higher variance. This point will be explained in more detail later. Second,

random forests are like many machine learning methods essentially model-free; they impose lit-45

tle prior structure on the final prediction. In contrast, economics models are often informed by

economic theory, and it is not straightforward how to incorporate it when constructing trees.

Causal forests are a groundbreaking method that allows inferring heterogeneous treatment

effects using random forests. In doing so, they bridge the gap between machine learning and

standard econometrics, allowing detailed causal inference from large data.50

This article proceeds as follows. Section 2 summarizes the core concepts behind regression

trees and random forests. Section 3 explains the conceptual steps to adapt random forests for the

estimation of causal effects, and introduces the ”state of the art” for estimating causal forests.

Section 4 showcases an application, and discusses limitations and alternatives.

2. A QUICK SUMMARY OF RANDOM FORESTS55

A classic version of a tree is the classification and regression tree (CART) as pro-

posed by Breiman et al. (1984). Given data on some outcome and associated covariates

{(Yi, Xi)}i=1,...,N ∈ R× RK for possibly large K ∈ N, a regression tree approximates the rela-

tionship between Yi and Xi by a step function. It does so by partitioning the covariate space into

a set of rectangles {R1, ..., RM}, where the prediction of Ym for rectanglem is the average of all60

observations falling into the rectangle, Ŷm = avg({Xi : i ∈ Rm}). The case of two covariates is

illustrated in Figure 1.

Fig. 1. Exemplary visualization of a regression tree with
K = 2 covariates.. Taken from James et al. (2013).

The partition is generated as follows: The initial node is simply the complete covariate space.

Then, this node is repeatedly split in two to minimize prediction mean squared error (MSE)

greedily; that is, each split looks for the maximum immediate improvement in MSE. A split must65

occur in one dimension only: Given some node R, a split is characterized by a covariate xk and

a corresponding value c. Then, the child node R1 contains the subset of R with xk ≤ c, and the

child node R2 contains its complement; the subset of R with xk > c. In this fashion, nodes are

repeatedly split until a certain stopping criterion is reached, for example until all terminal nodes

(”leafs”) contain a pre-specified minimum number of observations.70
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The procedure is prone to overfitting: With each new split, the tree predicts better the training

data, which reduces bias but increases variance of the predictions. To balance this inherent trade-

off, one needs to select one tree from the sequence of trees obtained from adding splits. A method

for doing so is cost complexity pruning, which introduces a penalty parameter α on the number

of nodes T that combined with the MSE generates a score Cα for each tree: 75

Cα =MSE + α|T | .

By finding α through cross-validation, one determines the optimal depth of the tree.

The major advantages of CARTs are their interpretability (the partition makes it transpar-

ent how predictions are made), and their computational speed even with high-dimensional data.

However, the major disadvantage is that although CARTs often have low bias, they tend to have 80

relatively high variance, so that predictions may change drastically with small changes to the

input data. For that reason, Breiman (1996) proposes bagging (”bootstrap aggregating”): av-

eraging the predictions of multiple trees, each grown on a subsample of the data. Notably, this

procedure works well exactly because of the high variance among trees, since the final prediction

is obtained from comparing very different models. To that end, the performance of this random 85

forest can often be improved by further decorrelating trees, for example by considering only a

random subset of covariates at each split.

3. FROM CAUSAL TREES TO CAUSAL FORESTS

We now turn back to our initial problem of estimating heterogeneous treatment effects. Sup-

pose we are given a sample of outcome, treatment, and covariates, {(Yi,Wi, Xi)}i=1,...,N , and 90

assume that treatment is randomized conditional on covariates

Yi(1), Yi(0) ⊥Wi |Xi ,

which is typically referred to as unconfoundedness, a necessary condition for identification. We

are interested in estimating the conditional average treatment effect (CATE) for some point x:

τ(x) = E[τi(x)|Xi = x] where τi = Yi(1)− Yi(0). 95

There are two main reasons why a random forest consisting of the usual CARTs is not

suited for this estimation problem. First, CARTs split and prune to maximize prediction MSE
∑N

i=1
(Yi − µ̂(Xi))

2/N , so that the most natural adaptation to our problem would entail target-

ing estimation MSE
∑N

i=1
(τi − τ̂i(Xi))

2/N . However, τi is never actually observed, rendering

this option infeasible. The second reason is that naive splitting will bias estimates, which is 100

a more subtle point. To see why, consider a simple example where the covariate space con-

tains only two elements, X = {L,R}, and we wish to estimate the difference in outcomes

∆ = E[YL − YR]. If we try to estimate ∆ via a tree, we have two choices: Either split the ini-

tial node, or not, which results in estimates ∆̂ = 0 or ∆̂ = Y L − Y R, where Y ℓ defines the

average outcome in leaf ℓ ∈ {L,R}. The most natural splitting rule places a split if and only 105

if Y L − Y R > c for some c ∈ R. However, this procedure introduces selection bias: For exam-

ple, if due to sampling variability we observe Y L − Y R > c, our estimate is biased upwards:

∆̂ = E[YL − YR|Y L − Y R > c] > ∆.

3·1. Causal trees

Athey & Imbens (2016) modify the CART procedure to generate what they call causal trees. 110

These trees differ from CARTs in two ways: First, causal trees use different sets of observa-

tions for building the tree and estimating treatment effects - which the authors call an honest
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approach to estimation - instead of conducting both steps on the same data. Second, causal trees

use an adapted rule for splitting and pruning that targets treatment effect heterogeneity instead

of prediction MSE.115

Honest approach. Honest estimation solves the problem of selection. Employing the simpli-

fied example above, even if due to sampling variability we happen to observe Y L − Y R > c and

place a split, the final estimate ∆̂ will be computed with an independent sample, and thus be

unbiased. However, it should be noted that this procedure entails a trade-off: By splitting obser-

vations into a training sample for partitioning and an estimation sample for calculating effects,120

both steps will be conducted using less observations. Therefore, the honest approach makes a

sacrifice in variance for improvements in bias.

Moreover, note that honest estimation modifies the rules for splitting and cross-validation. To

illustrate this fact, consider the splitting target of a CART, which for a given training sample Str

and partition Π can be written3
125

MSEµ(S
tr, Str,Π) =

∑

i∈Str

(Yi − µ̂(Xi;S
tr,Π))2 .

In the honest approach, the equivalent would be

MSEµ(S
tr, Sest,Π) =

∑

i∈Str

(Yi − µ̂(Xi;S
est,Π))2 .

However, since the point is not to use the estimation sample Sest for partitioning, the data in Sest

are treated as a random variable during the tree-building phase. Therefore, the target is expected130

MSE

EMSEµ(S
tr, Sest,Π) = ESest [MSEµ(S

tr, Sest,Π)] .

Splits are placed to improve an approximation ÊMSEµ(·), and similarly for cross-validation.

Targeting treatment effect heterogeneity. Recall that splitting and cross-validation also need

to be adapted for estimating (unobserved) treatment effects as opposed to (observed) goodness135

of fit. The key insight here is that for minimizing the MSE of the treatment effect MSEτ =
∑

i(τi − τ̂i(Xi))
2, it is sufficient to maximize the variance of of τ̂(Xi) in each child node. For

an illustration, consider again the conventional (non-honest) CART target

MSEµ =
∑

i∈I

(Yi − µ̂(Xi))
2 =

∑

i∈I

Y 2

i −
∑

i∈I

µ̂(Xi)
2 .

Since
∑

i∈I Y
2

i is unaffected by splitting decisions, MSEµ can be minimized by max-140

imizing
∑

i∈I µ̂(Xi)
2, which is equivalent to maximizing V ar(µ̂(Xi)) =

∑

i∈I µ̂(Xi)
2 −

(
∑

i∈I µ̂(Xi)
)2

since
∑

i∈I µ̂(Xi) =
∑

i∈I Yi for all trees. In other words, we can minimize

the MSE of µ̂(·) by picking splits that maximize the variance of µ̂(·). Analogously, causal trees

maximize a variance estimate of τ̂(Xi) at each split. Intuitively, targeting high treatment effect

variance will lead to large heterogeneity in treatment effects across nodes, which is exactly the145

goal.

As before, this splitting rule needs to be adapted to the honest approach, which entails esti-

mating a target ÊMSEτ (·), and similarly for cross-validation.

3 In the following, division by the number of observations is ignored for better readability.
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3·2. Causal forests

Although causal trees allow inferring consistent estimates for conditional average treatment 150

effects, they are not ideal for practical applications. First, just like common CARTs, causal trees

can be sensitive to small changes in inputs, and therefore in general have high variance. Second,

they tend to generate relatively large leaves, in which the assumption of unconfoundedness is

unlikely to hold: Usually, observations in a large leaf will differ in their probability of receiving

treatment, so that naive treatment effect estimates will be biased. Third, no asymptotic theory is 155

available for estimates obtained from causal trees, which might make it difficult to justify their

application in economics papers.

Wager & Athey (2018) propose causal forests, which address these problems. Causal forests

are a natural extension of causal trees in the spirit of Breiman (1996)’s bagging approach that

reduces the variance of estimates. Specifically, instead of growing and pruning a single causal 160

tree, Wager & Athey (2018) propose growing many deep causal trees on subsamples of the data.

Notably, these trees will not be pruned at all, but are instead grown until certain stopping criteria

are reached. These deep trees have small leaves, so that observations in each leaf can be assumed

homogeneous, implying that the unconfoundedness assumption likely holds.

As in Breiman (1996), averaging estimates from different trees becomes more powerful the 165

more different the trees are; that is, the higher the variance between them. Therefore, it has

proven effective to introduce variability additionally to random subsampling by considering only

a subset of variables for splitting at each split. This has the added benefit that in expectation, leafs

are small enough in every dimension of the covariate space. Moreover, the authors recommend

balanced splitting, in which only splits are allowed that leave a minimum number of treated 170

and untreated observations in each child node, and which do not generate child nodes of very

different size.

3·3. State-of-the-art causal forests

In practice, the inventors prefer a slightly different implementation of causal forests that is

applicable to a wider range of estimation problems and promises better performance. 175

The main problem with causal forests as in Wager & Athey (2018) is that they tackle only the

specific problem of treatment effect estimation. Instead, the generalized random forest as intro-

duced in Athey et al. (2019) can estimate any parameter that can be formulated as the solution

to a moment equation. This includes the specific estimation problem of heterogeneous treatment

effects, but also allows estimation when treatment assignment is endogenous and therefore needs 180

to be instrumented. For example, when trying to assess the effect of childbirth on mothers’ labor

choices, there may be issues of reverse causality (labor choices affecting procreation decisions)

or omitted variable bias (personality characteristics affecting both labor choice and procreation

decisions). More generally, generalized random forests allow estimating many of the workhorse

models in economics such as least squares, instrumental variables, maximum likelihood, and 185

quantile regression.

When estimating a causal forest within the generalized random forests framework, the imple-

mentation bears three main differences to the outline above: First, the causal forest is now only

used to infer observation weights that are then used for estimating a local moment condition. Sec-

ond, the splitting criterion is approximated by a linear function. Third, the authors recommend 190

regressing out the effect of covariates before estimation, which is referred to as orthogonaliza-

tion.
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Local moment condition. Consider any estimation problem whose solution θ(x) solves some

moment condition

E[ψθ|Xi = x] = 0 .195

Then, taking inspiration from similar approaches in nonparametric regression, it is straightfor-

ward to estimate θ(x) using the locally-weighted sample analog

θ̂(x) = argmin
θ

∥

∥

∥

∑

αi(x)ψθ

∥

∥

∥

2

,

where αi(x) are weights indicating the ”closeness” of observation i to some test point x. These

weights will be estimated via a causal forest.200

To clarify the above point: In a classical random forest, each tree computes its own treatment

effect estimate for the test point x, and the final estimate is the average of these individual es-

timates. In a generalized random forest, one does not use the estimates of the trees, but only

the partitions they generate. Intuitively, if an observation is in the same leaf as x in many trees

of the forest, it can be interpreted as being very similar, and therefore important for estimating205

any quantity of interest at x. Moreover, being in the same leaf is more important if the consid-

ered leaf is small, since that observation ”survived” many splits together with x. Conversely, an

observation that is not ”close” to x in many trees is likely less important for estimating θ(x).
The idea of inferring local weighting from a random forest is illustrated in Figure 2. Formally,

when growing a total of B trees, we can define as αbi the importance of observation i in tree b,210

and as αi(x) the overall weight of i for x:

αbi(x) =
1(i is in same leaf as x)

no. observations in same leaf as x
and αi =

1

B

B
∑

b=1

αbi(x) .

Fig. 2. Exemplary visualization of the local weights in-
ferred by a random forest. The test point is marked by the
blue ”x”, and observations are represented by black dots.

Taken from Athey et al. (2019).

Splitting. As before, trees are built by greedy splitting to maximize heterogeneity in treatment

effects. Although the estimation problem is framed differently, the final target is still minimizing

the MSE of θ(x) (the CATE, τ(x), in our case). Therefore, the ideal splitting criterion would be215

exactly the same as in Athey & Imbens (2016). However, since in general θ(x) is only identified
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through a moment condition (as opposed to a closed-form expression as for example the least

squares estimator), the exact criterion from Athey & Imbens (2016) is generally not feasible.

Athey et al. (2019) propose a sufficient statistic for the exact criterion, which has the property

that maximizing it also maximizes the exact criterion. However, since this statistic would be 220

computationally demanding to compute exactly, they use a linear approximation of it. Without

going into the details, splitting then reduces to two steps: a labelling and a regression step. The

labelling step computes pseudo-outcomes that estimate how much each observation increases or

decreases the objective function. These pseudo-outcomes form the splitting criterion that can be

targeted as in the classical CART algorithm. Importantly, the authors show that this procedure 225

nests the splitting procedure of classic CARTs, which is why generalized random forests are a

proper generalization of random forests as introduced by Breiman (1996).

Orthogonalization. The authors stress that performance of a causal forest can be improved

by first regressing out the effects of the covariates on outcomes and treatment, which makes it

more likely that the unconfoundedness assumption holds. This procedure is similar to the idea 230

of double machine learning as proposed by Chernozhukov et al. (2018a). Specifically, one starts

by inferring the conditional marginal expectation functions on the outcome, m(x) = E[Yi|Xi =
x], and on the treatment, e(x) = E[Wi|Xi = x]. These are two standard prediction problems

that can be tackled by standard machine learning algorithms (hence the name double machine

learning) such as classical random forests. Next, one runs the causal forest using as data the 235

residuals of the outcome, Ỹi = Yi −m(x), and the treatment W̃i =Wi − e(x).
Athey et al. (2019) show that generalized random forests have favorable asymptotic properties,

building on previous results from Wager & Athey (2018). Under certain regularity conditions,

τ̂(x) is consistent and asymptotically normal, and the asymptotic variance of τ̂(x) can be ac-

curately estimated. These theoretical results verify that causal forests can be used for rigorous 240

statistical inference with standard asymptotic properties, which makes the method attractive for

the classical estimation problems in economics.

Table 1 summarizes the core conceptual steps when estimating heterogeneous treatment ef-

fects at some test point x via a causal forest, as currently implemented in the R-package grf.

245

Table 1. Estimating heterogeneous treatment effects via a causal forest

1. Orthogonalize

Obtain residuals Ỹi = Yi −m(x) and W̃i =Wi − e(x) via classical random forests.

2. Generate causal forest

For b = 1, ..., B
a. Take a subsample from {Ỹi, W̃i}i=1,...,N of size s < N
b. Split the subsample into a training set Str and an estimation set Sest

c. Grow a causal tree using Str. Perform the splits by optimizing the gradient-based hetero-

geneity criterion, which entails labelling and regression steps. Stop splitting when reaching

pre-specified criteria on leaf size and balance

d. Identify the observations in Sest that are in same leaf as x

3. Compute weights

Infer the importance of each observation in the full sample for point x.

4. Solve sample analog of local moment condition

This can be done by a standard automatic solving procedure.
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4. APPLICATIONS AND DISCUSSION

For an exemplary application of causal forests, consider 401(k) eligibility in the US. Some

firms offer a private retirement savings plan to their employees, called a 401(k), where contribu-

tions by the employee may be matched by the company. The program was designed by the US

Congress with the intent to encourage individual retirement savings. For evaluating the success250

of the program, it is therefore critical to understand how much eligibility for the 401(k) plan

increases household savings.

I follow the analysis by Chernozhukov & Hansen (2004) and use the same data, obtained from

the 1990 Survey of Income and Program Participation, which contains cross-sectional informa-

tion on 401(k) eligibility, savings, and a set of individual characteristics for 9915 households.255

Since treatment is not randomized (401(k) is generally offered by relatively large employers),

the key identifying assumption is that treatment is effectively random after conditioning on the

control variables. A causal forest implemented via grf using default parameters and generat-

ing 12000 trees finds an average treatment effect of 7990, suggesting that eligibility induces

households to own roughly $8000 more across all assets. This result is perfectly in line with260

the estimates from Chernozhukov et al. (2018a) who re-estimate the same parameter using a

different approach to causal machine learning.

However, with our causal forest we can go beyond and estimate heterogeneity of the treatment

effect. The left panel of Figure 3 reports the distribution of CATE estimates across all observa-

tions, which are as expected mostly positive, but exhibit large variation. The right panel of Figure265

3 shows how the CATE estimates and their 95% confidence intervals differ with age for a hy-

pothetical average individual. Unsurprisingly, the estimated effect of 401(k) eligibility is larger

for older individuals, even after conditioning on income. This result underlines the importance

of convincing also young individuals that saving for retirement is sensible.

Fig. 3. Left: Distribution of estimated conditional average
treatment effects among all observations. Right: Estimated
conditional average treatment effect given age, with 95%

confidence intervals.
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Through the eyes of an economist, the following might be good reasons for using causal forests 270

in academic research. First and foremost, they are a powerful tool for uncovering heterogeneity

in treatment effects, even with many covariates and under complex functional forms. Second,

the generalized random forests framework allows tackling a wide range of empirical problems,

including both binary and continuous treatment, and instruments. Moreover, the same framework

can be used for other standard estimation problems in economics as well. Third, the estimation 275

procedure is similar to the method of moments estimator commonly used in economics, and

therefore arguably intuitive. Moreover, the weighting makes transparent which observations play

a key role for the final estimates. Fourth, causal forests are easy to implement through the openly

available and well-documented R-package grf. Finally, the approach has similar asymptotic

properties as the workhorse models in economics, and is therefore well-justified. 280

Despite their benefits, causal forests are not a one-size-fits-all solution. First, the estimates

generally depend on many tuning parameters which may require careful calibration. For an

economist, calibrating the model might be an unusual experience since the optimal parameter

values cannot be inferred from economic theory, but rather from trial and error as well as expe-

rience. Automatic calibration via cross-validation is possible, but may require a large number of 285

observations while at the same time it is usually difficult to judge what exactly ”large enough” is.

Second, the package grf is so far only available in R, which might require some researchers to

spend time getting acquainted with the language. Finally, one should consider that not many re-

searchers in economics are familiar with causal forests, and some might hold reservations against

a method they do not understand. Thus, compared to standard methods in economics, one might 290

need to put extra effort into convincing their audience that their findings are correct.

As a last note, this article would be incomplete without mentioning double machine learn-

ing as introduced by Chernozhukov et al. (2018a), which is a very general estimation method

for identifying average treatment effects from high-dimensional data. The key idea is what we

called orthogonalization in the context of generalized random forests, where it was included 295

because it proved favorable in other settings. Chernozhukov et al. (2018b) extend their proce-

dure for estimating heterogeneous treatment effects in randomized experiments. As such, causal

forests and double machine learning are currently the most promising approaches for estimation

of heterogeneous treatment effects.
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