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1 Introduction

Regression discontinuity (RD) designs are becoming increasingly popular in economics and other

social sciences for estimating causal effects from observational data. However, these designs can

suffer from low power because treatment effects are typically estimated with few observations.

While including control variables can alleviate this problem, in practice data are often high-

dimensional, so that standard methods break down without a way to properly select covariates.

In this project, I address this problem by developing a data-driven approach for covariate se-

lection in RD designs. Estimation works in the following three-step procedure: First, choose

preliminary observation weights without covariates, second, select a subset of covariates via

Lasso, and third, estimate the treatment effect using only the selected covariates. The approach

works with any number of covariates, requires minimal tuning by the researcher, and is easily

implementable using standard methods.

I contribute to a growing literature on the usage of covariates in RD designs (Frölich and

Huber 2019; Calonico et al. 2019). My approach extends the latter to arbitrarily large sets

of covariates. It is similar to Anastasopoulos (2020), but explores in detail the performance

of different implementation choices. The results contributed to Kreiss and Rothe (2023), who

study the theoretical properties of a generalized approach to Lasso-based covariate selection for

RD designs.

2 Approach

The following three-step procedure allows estimating RD treatment effects with any number of

control variables.

Step 1: Select a candidate bandwidth, for example the MSE-optimal bandwidth developed by

Calonico et al. (2014). The bandwidth defines weights that determine the degree to which each

observations contributes to the estimation (depending on their distance to the discontinuity).

Step 2: Perform selection of covariates via Lasso, using the weights obtained in Step 1, as

follows:

arg min
(α,β,γ′,τ)

n∑
i=1

(Yi − α− f(β, τ,Wi, Xi)− γ′Zi)
2K(Xi/h) + λ

d∑
j=1

|γj |,

The first sum represents the standard OLS minimization problem for RD designs (including

kernel weighting), while the second sum adds a lasso penalty on the covariates. In particular,

Yi denotes the outcome for observations 1, ..., n, Xi is the running variable, f(.) denotes the

functional form of the RD regression, and Zi is a d-dimensional vector of covariates. The

bandwidth h is estimated in Step 1. The penalization parameter λ is selected via cross-validation.
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Step 3: Estimate the treatment effect τ using only the selected variables, for example using

Calonico et al. (2014).

While a formal derivation of the necessary assumptions is out of the scope of this project, for

best performance the standard assumptions for RD and Lasso should be satisfied. Most notably,

RD requires continuity of E[Yi|Xi, Zi] and no manipulation of the running variable Xi, while

Lasso requires sparsity, meaning that only few variables are correlated with the outcome.

3 Simulations

I verify the performance of this approach in simulations similar to Imbens and Kalyanaraman

(2012). I consider a running variable distributed Xi ∼ (2 ∗ Beta(2, 4) − 1), a vector of i.i.d.

covariates Zi ∼ N(0, 0.12952), and i.i.d. errors ϵi ∼ N(0, 0.12952). The outcome Yi is defined

E[Yi|Xi = x, Zi = z] =

0.48 + 1.27x+ 7.18x2 + 20.21x3 + 21.54x4 + 7.33x5 + γ′z, if x < 0

0.52 + 0.84x− 3x2 + 7.99x3 − 9.01x4 + 3.56x5 + γ′z, if x ≥ 0 ,

so that the treatment effect is τ = 0.04. The coefficients on the covariates are γj > 0 if j ≤ 5

and 0 otherwise, so that the covariates are sufficiently sparse. I set n = 1000.

Table 1 reports results from 1000 estimations of τ using linear regression and a triangular kernel.

The first row reports results without any covariates, while the second shows results under an

ideal scenario in which only the five relevant covariates are included. In my setting, including

covariates improves mean squared error by 33%.

Rows 3 and 4 report results with lasso-based selection of covariates in its preferred specification

(as described above). The estimates differ only in the criterion applied to select the penalization

parameter λ.1 Both approaches achieve close to optimal performance, with improvements in

MSE over the baseline of around 25%.

In rows 5 and 6, I report results for a ”naive” selection step, in which the Lasso regression does

not control for the functional form of the RD regression. In my thesis, I explain in detail that

this performance is undesirable because it introduces negative bias due to a type of overfitting.

Table 1: Simulation results

h N− N+ λ covs bias(τ̂) sd(τ̂) mse(τ̂)

No covariates 0.197 147.5 98.7 - - 0.0203 0.0406 0.00206
Ideal covariates 0.184 136.4 93.4 - 5.0 0.0189 0.0321 0.00139
Lasso: Preferred, parsimonious 0.180 133.0 91.7 0.015 6.8 0.0187 0.0337 0.00148
Lasso: Preferred, generous 0.167 122.2 86.6 0.007 16.2 0.0174 0.0348 0.00152
Lasso: Naive, parsimonious 0.182 134.9 92.7 0.019 6.5 0.0151 0.0325 0.00128
Lasso: Naive, generous 0.172 126.6 88.9 0.009 15.9 0.0091 0.0324 0.00113

Notes: Results from estimating the local average treatment effect τ̂ 1000 times via cross-validated lasso selection. Rows 1-2
correspond to estimation without any, and with only the relevant covariates, respectively. Rows 3-4 report results for the
preferred version outlined above, while rows 5-6 report results for a naive version that omits the functional form of the RD
in the selection step. ”Generous” and ”parsimonious” selection based on criterion for selecting penalization parameter λ.

1The ”generous” criterion chooses λmin that minimizes the cross-validation error. In practice, such selection
is often too generous, so that I consider a ”parsimonious” alternative that chooses the largest λ for which the
cross-validation error is no larger than the error under λmin plus one standard deviation (Hastie et al. 2015).
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Figure 1 explores stability of my approach by repeating the estimation for varying numbers of

covariates. The green line refers to inclusion of ideal covariates, the blue and purple lines refer

to the preferred specification, and red and orange refer to the naive specification. The preferred

Lasso specification is stable for different dimensionality of covariates, while the performance of

the naive specification deteriorates with dimensionality.

Figure 1: Bias by number of covariates
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Notes: Bias from estimating the local average treatment effect τ̂ 1000 times via cross-validated lasso, for
different number of covariates. Oracle includes only relevant covariates, V1 and V2 are the naive and preferred
Lasso specification, and lmin and l1se denote generous and parsimonious variable selection, respectively.

In the full thesis, I explain in detail the reasons behind the poor performance of the naive Lasso

by estimating the bias it introduces. Moreover, I show that my preferred approach performs

well under more realistic data generating processes. I also show that iterating bandwidth and

covariate selection brings only little improvements. Finally, I explore an alternative approach of

choosing the penalization parameter λ by minimizing the estimated variance of the treatment

effect instead of the prediction error of the explanatory variables.

4 Conclusion

In this project, I conduct simulation experiments to demonstrate that lasso-based covariate

selection can improve estimation in the RD designs. I provide an intuitive approach that easily

applicable to a wide range of empirical settings.

References

Anastasopoulos, L. J. (2020). “Principled estimation of regression discontinuity designs”. arXiv:1910.06381.

Calonico, Cattaneo, and Titiunik (2019). “REGRESSION DISCONTINUITY DESIGNS USING COVARIATES”.

Calonico, S., M. D. Cattaneo, and R. Titiunik (2014). “Robust Nonparametric Confidence Intervals for Regression-

Discontinuity Designs”. Econometrica 82.6, pp. 2295–2326.
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